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ABSTRACT

In a social news website people share content they found on
the web, called news, then vote for those they like the most.
Voting for a news is then considered as a recommendation,
and news with a sufficient number of recommendations are dis-
played on a front page. Malicious users of such websites boost
their own content by manipulating the votes. We present Spo-
tRank, an algorithm that can demote the effect of manipu-
lations, thus leading to a better quality of service. We also
present a website that implement this algorithm and show evi-
dence of the efficiency of the approach, both from a statistical
and human point of view.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Spam demotion

General Terms

Algorithms, Design, Experimentation, Human Factors

1. INTRODUCTION

In the last years, the way people interact with each others
on the Web has drastically changed. Websites now provide
information which is an aggregation of user-generated con-
tent, generally filtered using social recommendation methods
to suggest relevant documents to users. The most known
example of such a website is Digg'. This is a social news
website: people share content they found on the web through
the Digg interface, then users can vote for the news they like
the most. Voting for a news is then considered as a rec-
ommendation, and (according to the result of a non disclosed
algorithm) news with a sufficient number of recommendations
are displayed on Digg's front page.

"http://digg. com
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Digg has been launched in November 2004, and since then
numerous Digg clones (generally denoted as Digg-like) were
created by webmasters. This huge success can be explained
by the amount of traffic such a website aggregate and redis-
tribute. Indeed, being on the front page of a website such as
Digg seems to be very interesting since repeated testimonies
amongst webmasters state that thousands of unique visitors
are obtained within one day for a website on the front page
of Digg (or similar sites). Since most websites follow an eco-
nomic model based on advertisement, obtaining unique visitors
is the best way to improve the income. It is then tempting for
a user to use malicious techniques in order to obtain a good
visibility for his websites.

A malicious technique is explained in details by Lerman in [9]
where she recall the Digg 2006 controversy. This controversy
arises when a user posted on Digg an analysis proving that the
top 30 users of Digg were responsible for a disproportionate
fraction of the front page (latter studies ensures that 56% of
the front page belongs to the top 100 users only). This means
that the top users are acting together in order to have their
stories (e.g websites they support) displayed on the front page.
The controversy led to a modification of the Digg algorithm in
order to lower the power of this so-called bloc voting (collusion
between a subset of users).

Since 2006, malicious users became more and more efficient
(see for instance the paper of Heymann et al. [4]). Cabals
(collusion of large group of users that vote for each others)
have been automatized using daily mailing list, some users
post hundreds of links in order to flood the system, others
have several accounts and thus can vote for themselves (using
several IP addresses) etc. To the best of our knowledge, no
social news website implements a robust voting scheme that
avoid the problem of dealing with malicious users while still
providing a high quality of service (i.e. providing relevant news
to users).

The main contributions of this paper are:

The design of the SpotRank algorithm. SpotRank is a set of
heuristic techniques whose aim is not to detect and suppress
malicious voting behaviors in social news website, but rather
demote the effect of these behaviors, thus leading to lower
the interest of such manipulations for spammers.

SpotRank is built over ad-hoc statistical filters, a collusion
detection mechanism and also over the computation of the
pertinence of voters and proposed news.

A strong experimental analysis. We present a website that



implement this algorithm and show evidence of the efficiency
of the approach, both from a statistical and human point of
view. This analysis is twofold : we give evidence that using
SpotRank we maintain a behavior for the social news website
which correspond to a regular behavior, and we also provide a
study of the perceived quality of the algorithm on 114 users
of our experimental platform (via a comparison with others
french social news websites).

The structure of the paper is as follows. In section 2 we
give some insight about the very few related work. Then, in
section 3, we present our modeling and describe in detail the
SpotRank algorithm. Last, we give in section 4 a complete
experimental analysis of our method.

2. RELATED WORK

Regarding the analysis of social news websites there are only
a few research papers available. The work done by Kristina
Lerman (and her coauthors) in many papers [9, 11, 10, 14, §]
is probably the most extensive done in this field. These papers
analyse the behavior of users and content in social sites such
as Digg and Flickr?. Abstract modeling of users is done and
allows to infer the dynamics of users’ rank [8], but also to
predict which news can obtain good ranking according to the
first votes [11]. However, this work is analytic, the goal is
to understand how social news websites work. We, on the
other hand, aim at designing a robust voting scheme in an
adversarial environment, thus our approach is normative.

In their paper [4], Heymann et al. present a survey on spam
countermeasures for social websites. They sorted three cate-
gories of such countermeasures: identification-based methods
(i.e. detection of spam and spammers), ranked-based method
(i.e. demotion of spam) and limit-based method (preventing
spam by making spam content difficult to publish). Clearly
SpotRank falls in the scope of ranked-based method since our
goal is to reduce the prominence of content that benefit from
malicious votes.

Bian et al. [1] describe a machine learning based ranking
framework for social media that is robust to some common
forms of vote spam attacks. Some other work focusing on
manipulation-resistant system, and using a notion close to
the one of pertinence, can be found in [16].

A related field of research is the detection of click fraud
in the Pay Per Click (PPC) advertising market, but also in
web search ranking. In PPC, webmasters display clickable
advertisements on their website and are paid for each click
going through the ad. In web search ranking, the more a link
to a website is used, the higher the site is ranked. For instance
Jansen [6] give details of the impact of malicious clicks in PPC
while Metwally et al. [12], Immorlica et al. [5] give strong
analysis of the phenomenon together with algorithms to cope
with it. Radlinski and Joachims [15] focus on randomized
robust techniques that infer preferences from click-through
logs.

The problem of giving to the users of a community a good
selection of news seems to be a recommendation problem.
Cosley et al. [2] study the relation between recommendation
systems and users, while Lam and Riedl [7], and O'Mahony

http://www.flickr. com/

et al. [13] address the problem of malicious users and robust-
ness of systems. However, recommendations by friends has
been proven to always be better than recommendations us-
ing automatic systems (see for instance the papers of Sinha
and Swearingen [17]). To overcome this problem, researchers
from the recommendation systems field introduce the notion
of trust as a reflection of the users similarity.

In this paper, we focus on completely different techniques
that demote votes that are malicious, or done by users known
to be malicious. Our approach does not use machine learning
methods and is based on the notion of pertinence. It is worth
noting that despite the lack of research papers in this field,
there are probably a lot of undisclosed work going on in the
social news websites' teams.

3. SPOTRANK ALGORITHM

In this section we first present the framework on which Spo-
trank is built together with its principle. We then describe
independently each step of the algorithm.

3.1 Framework and principle

In this paper, we consider that the voting system (Spot-
Rank) is used by a community of users belonging to the set
U. Any user of the community can propose its own news (or
content), that we will call spots. The set of spots is denoted
by S§. Any user of the community can vote for a spot. A vote
is a triple (u,s,v) where u,v € Y and s € S. The set of all
votes is noted V. For the sake of clarity we introduce some
notations:

Vo={(w,s,v) €V |w=u}
Vo ={w,s,v) eV |w=uv=u}
Vs={(u,t,v) eV |t=s}

V., denotes votes made by u, V,, the votes made by u for a
spot proposed by u/, and Vs the vote made by all users in favor
of the spot s. This modeling is rather theoretical, in practice
we have access to a lot more information on users, votes and
spots. In the following, we will access this information through
functions that will be either clearly defined by the context or
explicitly just before their use.

We can now schematize the SpotRank method. It is impor-
tant to know that it is based on two key notions. The first
one is that two votes do not necessarily have the same value.
Indeed, we will assign, depending on many factors, a score to
each vote. This will induce a score for each spot (the sum of
the score of each vote in favor of this spot). The higher the
score of a spot, the closer to the first place (e.g. the top of
the front page) is the spot. A large part of SpotRank is the
score computation mechanism. The other key notion is the
pertinence. The pertinence of a user depends on the perti-
nence of the spots he voted for, and vice versa. A part of the
score update of a spot will depend on the pertinence of the
user that votes for this spot. Last, an additional mechanism
is used in order to avoid large scale manipulations: a method
to detect cabals (i.e. group of users that repeatedly vote one
for each other).

Finally, figure 1 depicts the voting process of SpotRank for
a given spot. The method is working as follows:

A user proposes a spot. The score of this spot is initialised
according to several criteria (all related to the known behavior
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Figure 1: Principle of our method

of the user).

Users vote for the spot. Each vote induces an update on the
spot's score and pertinence, but also of the pertinence of users
that previously voted for this spot. The score of the spot is
then used by a social news website in order to rank published
content.

Periodically, an algorithm that detects collusion between users
outputs clusters of potential malicious users. These clusters
are used for computing the score of a vote.

To avoid old very strong spots to stay forever at the top of
the ranking, we reduce the score of a spot periodically.

In the following we describe in details each of these steps.
Each time a practical parameter is used, we denote it by «;
(where i € N) and discuss on its real actual value in prac-
tical applications. Actual values are set according to a back
and forth method: we set a value, test the robustness of the
method with this value, modify it if necessary, until we obtain
a good quality of result.

3.2 Proposing a spot

The first step of our method is the proposition of a spot.
The main threat at this point for social news website is the
flood of the system by some malicious users.

When a user proposes a spot it is necessary to initialize its
score. In an ideal world any value can be used for this initial-
ization, but we will use this step to demote spots proposed
by frenetic spot posters. The initial score will then depend on
two factors: first, the frequency at which the user proposes
spots and second, the frequency at which new spots come
from the user’s IP address.

More precisely, the initial score of a spot s is calculated with
the following formula:

init_score(s) = f(n) * c;p(m),

where n is the number of spots proposed by the user in the
last 24 hours, m is the number of spots previously posted from
the user’s IP in the last 20 minutes. f and c¢/p are defined as
follows:

100 if n< ap

50 if ap < n<2a9
10 if 200 < n < 4dap
0 otherwise

f(n)=

m
and ¢p(m) = max (0,1 — 071)

In practical applications ap and a; will be small integers that
depend on the number of visitors of the social news website.
We recommend to use ap = 2 and a1 = 10.

With this formula for initializing the score of a new spot, we
prevent the effective “spot bombing” from spammers. Indeed
the proposed spot initial score will drop fast until it has value
zero. The ¢p(m) coefficient also helps to track down spam-
mers that use several accounts to pollute the spot pool. If
we add to a social news website a mandatory identification in
order to propose a spot, it becomes meaningless to use several
accounts (IP spoofing is then useless).

3.3 Voting for a spot

Once a spot has been proposed to the community it can
be “pushed” to the front page (i.e. put in the top ranked



news). The spots ranking is done according to their scores.
The voting part is the one requiring the most attention since it
is where the spammers will concentrate all their attacks. We
propose a set of filters whose aim is to counter all the attacks
a spammer could think of. The idea here is simple: a vote
has a base value which is the pertinence of the voter. This
value is then modified according to several criteria to provide
the actual value of a vote (its score). The score of the vote is
then added to the current score of the spot in order to obtain
its new score.

Base value of a vote: pertinence. The key notion of our
voting system is the pertinence of users and spots. We denote
the pertinence of user u; by pert(u;). Similarly, the pertinence
of a spot s; is pert(s;).

Definition 1. The pertinence of a user without voting his-
tory (i.e. a new user) is a constant as.
The pertinence of a user u; with a voting history is:

1
ert(ui) = — ert(s),
p ( ’) |1}u‘ EE: p ( )
(u,s,v)eVy
where
score(s)
ert(s) = ———
pert(s) ]

The pertinence of a user u is thus the mean value of the
pertinence of the spots u voted for. The pertinence of a spot
is its score divided by the number of votes it received (i.e. this
is the mean value of the votes for s). In our experiments we
set a3 = 100 to match the value of a fresh legitimate spot.

We can now define the base value of a vote as the perti-
nence of the user that votes. This value is weighted by several
coefficients that we can now describe, each of this coefficient
can be seen as a response to a specific type of attacks.

High frequency voting. Most of the time, spammers try to
promote a lot of low quality news. All the gain of their manip-
ulations is more due to mass effect than to the promotion of
only one peculiar web page. Thus they have no other way of
voting than using burst voting. It means that a typical spam-
mer votes for a lot of spots in a short amount of time. To
demote this effect we will weight the score of a spot by a co-
efficient freq(u) that depends on the user's voting frequency.

Definition 2. Let n = |V,|, freq(u) is defined as

ifn<?2

1
freq(u) :{ min(1 7date(v”)fdate(vl)) otherwise

oy *kn
a4 is the time interval that is reasonable between two votes.
Abusive one-way voting. In order to decoy manipulation de-
tection, a typical spammer uses several accounts: one clean
account to propose spots, and several disposable accounts to
vote for the spots proposed by the clean account. To reduce
the score of votes made in this spirit, we define a coefficient
fp(u, u") whose goal is to take into account the particular fre-
quency of systematic one-way voting from a user u to a user

u'.

Definition 3. Let u,u’ €U, fp is defined as

|Lmu4
Vul

fp(u,u)=1-—

With this coefficient, users that vote only for one specific

user will have their vote becoming useless.
Quick voting. Spamming is a large scale activity so it is un-
thinkable for a spammer to stay a long time on one given web-
site. The behavior is then to propose a spot and to quickly
vote for it using several accounts. This is not a natural be-
havior since the time interval between the proposition and the
vote is too short for a human to even look at the website
associated to the spot.

To avoid quick voting we block any vote in the first minute
of appearance of the spot s on the site and after that we use
a stair function based on date(s) and t the current time. This
function (called time) is defined as follows.

Definition 4.

0.3 if t —date(s) < 120
0.5 if t — date(s) < 240

time(s) =< 0.7 if t — date(s) < 420
0.9 if t — date(s) < 540
1 otherwise

Multiple avatars and physical community. As said previously,
a typical spammer will have many accounts, sometimes he will
also have automatic voting mechanisms. These voting bots
are often located on only a few servers, so they share the
same IP address (or only very few IPs addresses). It is then
interesting to have a coefficient that demotes votes for a given
spot if they come from the same IP address. One could object
that legitimate users can share the same IP address. Our
opinion on this matter is that when legitimate users belonging
to the same IP address vote for the same spot it is a kind of
manipulation (one can think of students of the same university
that vote for one of them).

Therefore, for a same spot, votes coming from the same IP
address receive a decreasing coefficient coeff;p depending on
the number n of previous votes from this IP address:

Definition 5.
coeffip = (as)"

In practical applications as is a real number between 0 and 1
(typically % in our case).

Avoiding the voting list effect. The main threat for social
news website is the existence of cabals. A cabal is a group of
people that unite their efforts in order to promote their own
spots. There exists highly organised cabals whose goal is to
manipulate ranking of social news websites. This is classically
done through daily mailing lists. The daily mail contains a
list of news for which votes are required. Users of such lists
can propose their own news to the list depending, most of the
time, of the number of votes they made for other members of
the cabal.

In the next subsection we present our method for detecting
cabals (that we call clusters). But here we assume that we
already detect these clusters. Such a cluster is a list of users
that periodically vote one for an other.

To slow down the effect of the cabals we proceed as follows:
if a user u votes for a user ¢/ and both users are in the same
“cluster” then the value of the vote is weighted by the inverse
of the size of this “cluster”. This lead to the definition of the
following coefficient.



Definition 6. let cluster(u) be the cluster to which user u
belongs (if any), then:

1 if cluster(u) # cluster(u")
otherwise

clust(u, u') = { 1

|cluster(u)|
Summary: computation of the actual score of a vote. We
can now define the score of a vote. This is actually the base
value score weighted by all the coefficients we defined above.

Definition 7. the score of a vote v from the user u for the
spot s posted by the user u' is:

score(v) = pert(u)-freq(u)-fp(u, u')-clust(u, u')-time(s)-coeff,p

It now remains to define the score of a spot according to this
definition.

Computation of the score of a spot. The score of a spot is
simply the sum of all votes for this spot and of the initial score
of the spot. This quantity is however weighted by a multiplica-
tive coefficient that depends on the age of the spot. This time
decay is used to promote new spots against old strong spots
(it is not interesting that popular news stay forever on top of
the ranking).

Definition 8. The score of the spot s € S is defined as:

score(s) = time_ decay(s) - (init_score(s) + Z score(v))
VEVs

The score of a spot s is updated each time a user votes for
it, but also periodically since the value of time decay varies
over time. In practical applications, we define the time decay
as:

Definition 9. Let d be the age (in days) of the spot.

. 1 if d <2
time__decay(s) = 08 ifd>2

The decay start after 2 days to give fresh spots an advantage
over old ones. The value 0.8 comes from an experiment on the
better value to ensure a sufficient turn-over on the front-page
of the social news website.

On a classical social news website using SpotRank, all spots
are ranked according to their score (the higher the better).

3.4 Detecting cabals

In this subsection, we present our algorithm for the detec-
tion of collusion of voters. It is a fair idea to use the weighted
directed graph of votes (nodes represent voters, arcs corre-
spond to votes and weights to the number of votes between
two users). The standard approach to identify group of users
in this graph is then to cluster it. State-of-the-art techniques
such as the ones of [18, 3] are not efficient on large graphs.
The graph underlying a social news website can quickly attain
a huge size, so we cannot use these clustering techniques.

Instead, we propose here to regroup people that massively
vote between themselves. Therefore we use the following al-
gorithm that should be run regularly to identify new cabals
and actualize the existing ones.

Collusion detection for user v
1. Let E={(v,k)/Vuy ZONk =Vurl}

Sort E according to k in decreasing order.
2. Put the first p users (according to this sorting) into a
set Fav,(u).
3. Sort alphabetically the set Fav,(u) with u’s ID included.
4. Vv € Favy(u), if |[Fave(u) N Favy(v)| > as then u and
v are in the same group.

This algorithm should be run for each user in order to assign
this particular user to a cluster (potentially a cluster of size 1).
Let n = |U|, the complexity of the algorithm is O(nlog(n))
for the step 1, O(1) for the step 2, O((p+ 1) log(p + 1)) for
the step 3, and O(p?) for the step 4. The total complexity is
then O(nlog(n) + p*) which is, in practice, @(nlog(n)) since
p is a fixed parameter. In our experiment, p =5 and as = 3.
Those parameters have rather small values, it can be explained
by the fact that our community is still small (200 users).

After running this algorithm we store the groups along with
their size to reuse it during the vote phase.

4. EXPERIMENTS

We present two different evaluations of SpotRank. The
first is a statistical analysis of the output of our method: dis-
tribution of users, votes, pertinence of both users and spots,
ranking, cluster sizes, etc. The second evaluation is a investi-
gation of the human perceived quality of our ranking method.

In order to collect data about the behavior of SpotRank we
created a social news website (http://www.spotrank.fr).
Spotrank.fr strictly implements the method presented in this
paper and ranks the spots according to their score (computed
as presented in section 3). The website has been launched
on July the 9th. The data we use for the paper were col-
lected the 10/26/2009. Since its launch, the website received
around 15600 visits, had served around 43000 page views.
The bounce rate is 67.85% and the average time spent by a
visitor on the website is 2:37 minutes. The presence of spam-
mers is effective, we estimate (by hand) that at least 10 to
15% of our 200 registered accounts belong to spammers. Log
files are available for the reviewers upon request.

4.1 Log analysis of spotrank.fr

Our log files contain all the information about spots and
users and allow us to show accurately the behavior of our
method in a real adversarial environment. We present our
analysis through several figures. The information we used for
this experimentation was collected between the 23rd of July
and the 26th of October.

Figures 2, 3 and 4. These figures show similar data at three
different moments of our analysis: at the beginning (07/23),
the 09/08 and at the end (10/26). They all represent the per-
centage of users of SpotRank that have a given pertinence.
For instance the first bar on the left of figure 2 means that
around 7% of the users have a pertinence between 0 and 5.
We can see that as time goes and the number of users grows
the pertinence of the users tends to spread more. The per-
centage of users at the right of all graphics represents the new
users that never voted for anything so they keep their initial
maximum pertinence. Even if distribution of users regarding
the pertinence seems almost uniform, we can see that most



users have a pertinence between 15 and 50. Thus we define
two categories of users, the non-relevant users whose perti-
nence is less than 10 and the relevant users whose pertinence
is greater than 50 but don’t include the newcomers in order
to make sure that this good pertinence is not a consequence
of a clean start. Being in the non-relevant category does not
mean for a user that he votes for spots others don't like. It
means that the user votes often for spots with low pertinence.
It is likely that this category contains mainly spammers.
Figure 5. The two curves on this figure show the evolution
of the proportion of users belonging to both the non-relevant
and the relevant categories on a period of 3 months. We can
see that the percentage of non-relevant users including spam-
mers is decreasing while the percentage of relevant users is
increasing. This could be explained by spammers being dis-
couraged but more likely by the arrival of new relevant users.
The increase of the size of the relevant category can also be
explained by the fact that at the launch of the website, spam-
mers propose spots faster than legitimate users. This means
that at first most of the spots have a low pertinence, inducing
a low pertinence for voters.

Figure 6. This histogram presents the number of users that
proposed a given number of spots during the 3 months of the
experimentation. It can be seen that the majority of users
proposes a few spots (less than 3). There are few people
with a oddly high number of proposed spots. We checked by
hand the top proposers. Amongst them, the first three (with
respectively 591, 440 and 108 spots) are clearly spammers
while the fourth (99 spots) is a borderline user that proposes
every single post of his blog.

Figure 7. The figure depicts the number of users w.r.t. the
number of votes. Pay attention to the fact that the Y-scale
is logarithmic. We can see that most users don't vote a lot:
more than 80% of them had voted less than 10 times. The
people that vote the most are clearly the ones we suspect to
be spammers. If we look for instance at the outlier with 533
votes, this is without surprise the spammer we spotted on the
previous figure. It is a user that proposes a lot of spots and
vote only for his own spots. It does not appear in the figures,
but they are users that does not propose spots (or only very
few) and that vote a lot.

Figure 8. On a social news website such as spotrank.fr there
are only a few slots available for promoting highly popular
spots. Is this a problem? Is the pressure on spots too high
to ensure a fair access to the front page for spots that de-
serve it? Figure 8 gives the answer by showing the behavior
of spots’ score during their first 48h of existence (i.e. before
they undergo the exemption owed to the time decay). The
max (resp. min) curve give the score of the most (resp. least)
popular spot at the time the measure is done. The average
curve give the mean value of scores during the first 48h. We
can clearly see that only a few spots become popular. We
can also infer from this figure is the average value of votes for
the most popular spot. Indeed, most popular spots received
around 15 votes, meaning that the average score of votes for
these popular spots is around 25 (to compare to 100, the max-
imum possible score of a vote, but also to 10, the threshold
beyond which users are not considered relevant anymore).
Figure 9. This last figure shows the number of votes that

share a given score. It is clear that most of the votes (x1600)
have very low score. It is not a surprise since we already have
exhibited a spammer with 533 votes that vote only for himself
and with high frequency, meaning that several of our filters
act to preclude the score to be high. Most legitimate users
seems to have votes with score between 5 and 50, and only a
few have very high score.

To summarize, the figures that we provide in this subsec-
tion show clear evidence of the effectiveness of the method:
spammers are detected, and the score of votes seems to be
adapted to avoid manipulations.

4.2 Human Evaluation

Even with a very strong analysis of the log files, it is im-
possible to judge the quality of the filtering of our method.
Indeed, the algorithm consists in filtering news w.r.t. the way
people vote, it is not content related. To cope with this is-
sue we decided to gather some feedback from the website
visitors. Since an absolute judgement is impossible to obtain
without a long debate on what is the quality of a website, we
choose to compare the top “stories” of three social news web-
site. The first is of course spotrank.fr which implement the
method presented in this paper, the other two are two of the
three major competitors in the field in France. The interest of
the two chosen social news website is that they use automatic
method to filter news, and also that the human moderation
has mainly the goal to suppress non legal content. The way
these two competitors are filtering news is mostly unknown
since those are business websites. It is just known that one of
them is giving more weight to news for which there are a lot
of votes in a short time interval. From now on, they will be
denoted as compl and comp2. Our survey protocol is the fol-
lowing. To have relevant results we periodically collected the
first five spot on spotrank.fr together with the top 5 of the
two major french social news websites comp1 and comp2. We
then automatically generate disposable web pages containing
a shuffle of this list of 15 news. Each web page is then sent
to a volunteer who has to tell for each news if,

Yes, it is relevant for the news to appear on the front page of
a social news website.
No, it is not relevant for the news to appear on the front page
of a social news website.
DnK, he is not able to determine if the news deserve to be on
the front page or not.
Err, The news was not accessible when he tried.

We collected the first five news of each website during a
period of 3 months, and 114 persons participated to the poll.
We now present our experimental results.

Figure 10. This figure could be considered as a summary of
the results of the poll. For each competitor it presents the
number of Yes, No, Dnk and ERR. The number of ERR that
appears in surveyed people answers is not of interest since
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this is an external factor that applies for all three social news
website. However a higher rate of error could indicates links
to unreliable site. Pay attention to the fact that for each
competitor, each surveyed person is giving 15 answers, so the
total number of answers is 1710.

The important point is that SpotRank outperforms both
competitors whatever the criterion. Our method received 344
Yes while compl and comp2 received respectively 270 and
177 Yes. The performances of compl (resp. comp2) are
only 78.5% (resp. 50%) of those of SpotRank, thus surveyed
people think that the ranking given by SpotRank is of higher
quality than the two others. Concerning the No answer the
situation is similar: this time the lower is the better since this
means that the top spots are considered not legitimate and
SpotRank received 174 No, while compl and comp2 received
237 and 247 such answers. Last, 44 DnK were received by
SpotRank. This is again a better achievement than compl
and comp?2 and this means that the filtering of SpotRank gives
clearer results (only a few borderline spots).

Figure 11. In the previous figure, the behaviors of all users
were merged in the counting of each type of answer while
here we consider the opinion of each surveyed person. a social
news website is considered first if the number of Yes he re-
ceived from a peculiar answerer is greater than those received
by the two other competitors. It is second (resp. third) in
the case where it received the second (resp. third) number of
Yes. SpotRank is in first position two times (resp four times)
more than compl (resp comp?2), showing again its higher per-
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Figure 13: rank w.r.t. the number of DnK

formances. It is naturally second and third less often than the
others.

Figures 12 and 13. These figures are similar to the one we
mentioned before for the No and DnK answers. These two
figures confirm what we have presented above.

To summarize, this user satisfaction survey show clearly that
the filtering of SpotRank is perceived to be of high quality.
It is interesting to note that some early adopted spammers
have already given up playing with SpotRank (see previous
subsection).

5. CONCLUSION

We presented a robust voting system for social news website
whose goal is to demote the effect of manipulation. Through
a website that implement this algorithm, we show evidence
of the efficiency of the approach, both from a statistical and
human point of view. SpotRank clearly outperforms real com-
petitors in a real life web ecosystem, proving the interest of the
key notions used to design the method (pertinence, frequency
filtering and collusion detection).
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